

CYPRESS

CYM1441

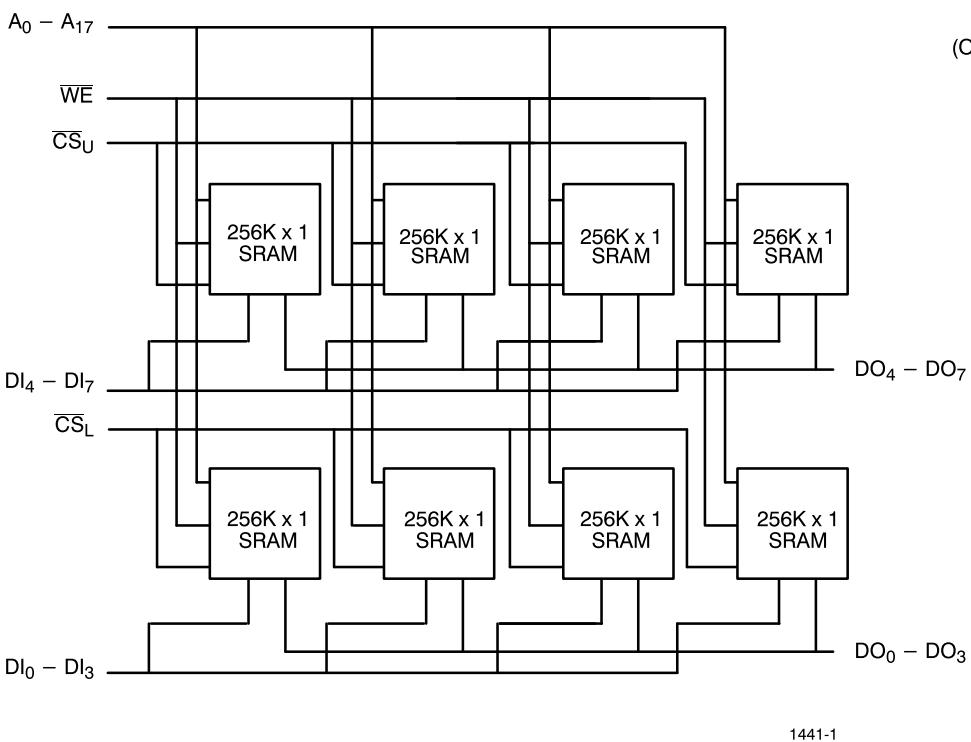
256K x 8 Static RAM Module

Features

- **High-density 2-megabit SRAM module**
- **High-speed CMOS SRAMs**
— Access time of 20 ns
- **Low active power**
— 5.3W (max.)
- **SMD technology**
- **Separate data I/O**
- **60-pin ZIP package**
- **TTL-compatible inputs and outputs**
- **Low profile**
— Max. height of 0.5 in.
- **Small PCB footprint**
— 1.14 sq. in.

Functional Description

The CYM1441 is a very high performance 2-megabit static RAM module organized as 256K words by 8 bits. The module is constructed using eight 256K x 1 static RAMs in SOJ packages mounted onto an epoxy laminate substrate with pins. Two chip selects (\overline{CS}_L and \overline{CS}_U) are used to independently enable the upper and lower 4 bits of the data word.


Writing to the memory module is accomplished when the chip select (\overline{CS}) and write enable (\overline{WE}) inputs are both LOW. Data on the eight input pins (DI_0 through DI_7) is written into the memory location specified on the address pins (A_0 through A_{17}).

Reading the device is accomplished by taking chip select (\overline{CS}) LOW while write enable (\overline{WE}) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins (DO_0 through DO_7).

The data output pins remain in a high-impedance state unless the module is selected and write enable (\overline{WE}) is HIGH.

Two pins (PD_0 and PD_1) are used to identify module memory density in applications where alternate versions of the JEDEC-standard modules can be interchanged.

Logic Block Diagram

Pin Configuration

ZIP Top View	
(OPEN)	PD ₀
NC	2 GND
V _{CC}	3 PD ₁ (GND)
DI ₀	4 NC
DO ₀	5 NC
A ₀	6 NC
A ₂	7 NC
A ₄	8 NC
A ₆	9 NC
GND	10 NC
DI ₁	11 NC
DO ₁	12 NC
WE	13 NC
A ₉	14 NC
CS _L	15 NC
DI ₄ – DI ₇	16 NC
DO ₄ – DO ₇	17 NC
DI ₀ – DI ₃	18 NC
DO ₀ – DO ₃	19 NC
	20 NC
	21 NC
	22 NC
	23 NC
	24 NC
	25 NC
	26 V _{CC}
	27 A ₈
	28 NC
	29 NC
	30 NC
	31 NC
	32 NC
	33 NC
	34 NC
	35 NC
	36 NC
	37 NC
	38 NC
	39 NC
	40 NC
	41 GND
	42 A ₁₀
	43 A ₁₁
	44 A ₁₂
	45 A ₁₃
	46 A ₁₄
	47 A ₁₅
	48 A ₁₆
	49 A ₁₇
	50 NC
	51 NC
	52 NC
	53 NC
	54 NC
	55 NC
	56 NC
	57 NC
	58 NC
	59 NC
	60 NC

1441-2

Selection Guide

	1441-20	1441-25	1441-35	1441-45
Maximum Access Time (ns)	20	25	35	45
Maximum Operating Current (mA)	960	960	960	960
Maximum Standby Current (mA)	320	320	320	320

Shaded area contains preliminary information.

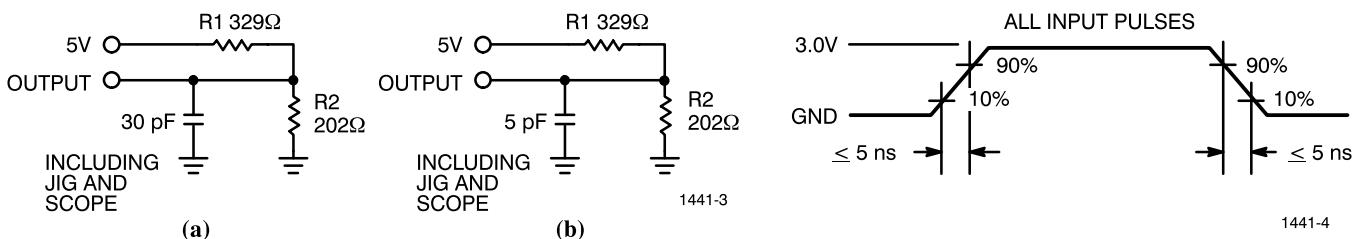
Maximum Ratings

Maximum Ratings
(Above which the useful life may be impaired.)

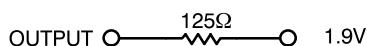
Storage Temperature	-55°C to +125°C
Ambient Temperature with Power Applied	-10°C to +85°C
Supply Voltage to Ground Potential	-0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%


Electrical Characteristics Over the Operating Range

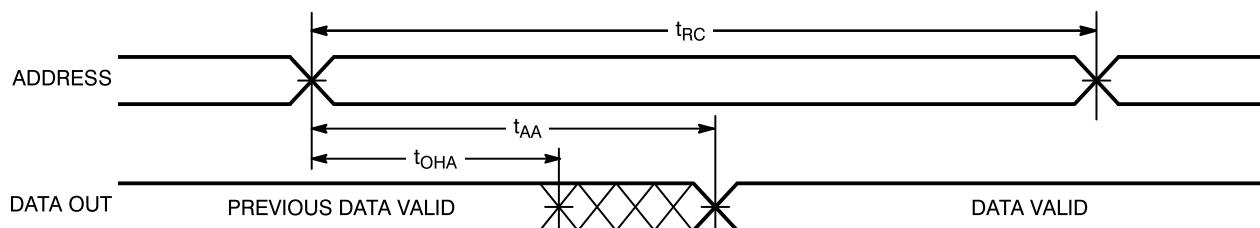
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 12.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	V
I _{IX}	Input Load Current	GND ≤ V _I ≤ V _{CC}	-80	+80	µA
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output Disabled	-50	+50	µA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA, CS ≤ V _{IL}		960	mA
I _{SB1}	Automatic CS Power-Down Current	Max. V _{CC} , CS ≥ V _{IH} , Min. Duty Cycle = 100%		320	mA
I _{SB2}	Automatic CS Power-Down Current	Max. V _{CC} , CS ≥ V _{CC} - 0.2V, V _{IN} ≥ V _{CC} - 0.2V or V _{IN} ≤ 0.2V		160	mA


Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = 5.0V$	60	pF
C_{OUT}	Output Capacitance		15	pF

AC Test Loads and Waveforms

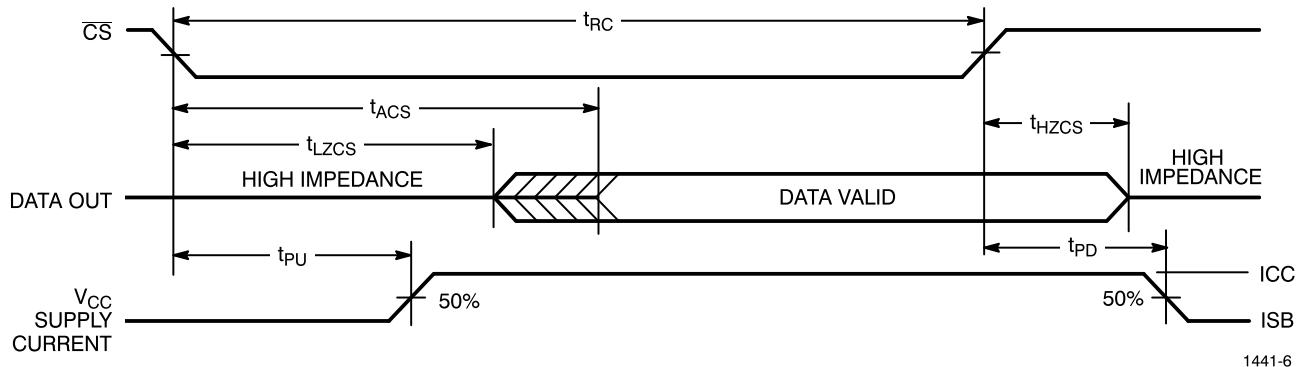
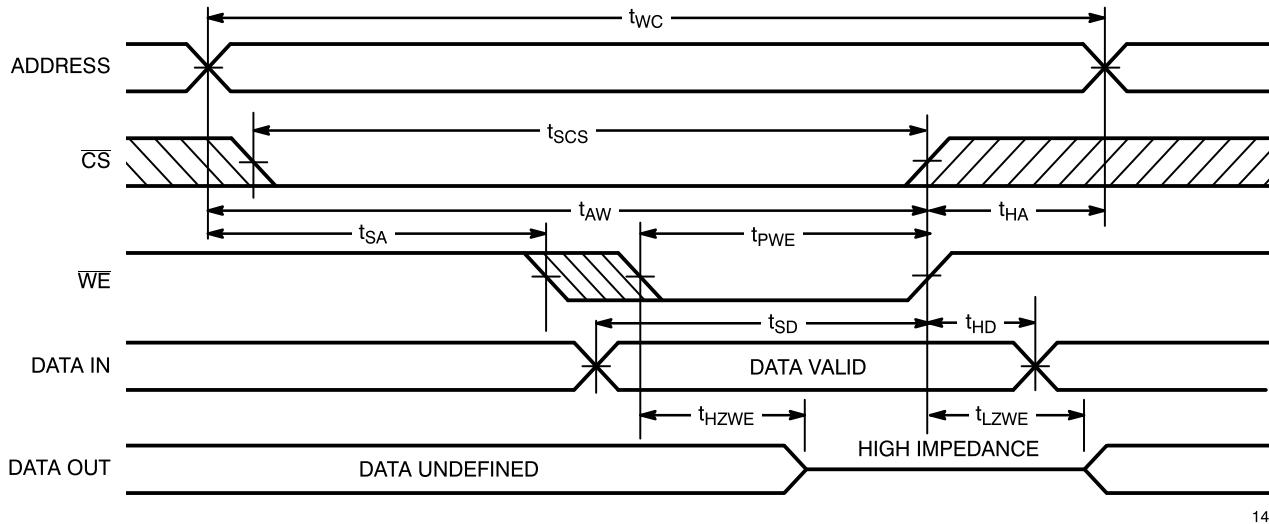
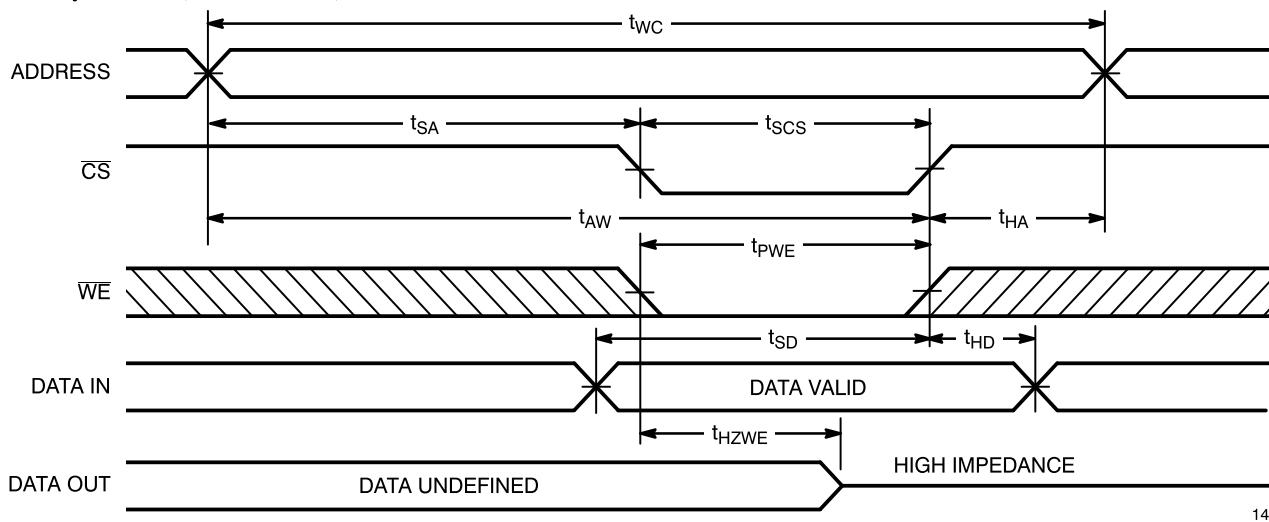
Equivalent to: THÉVENIN EQUIVALENT


Notes:

1. V_{IN} (min.) = - 3.0V for pulse widths less than 20 ns. 2. Tested on a sample basis.

Switching Characteristics Over the Operating Range^[3]

Parameter	Description	1441-20		1441-25		1441-35		1441-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	20		25		35		45		ns
t_{AA}	Address to Data Valid		20		25		35		45	ns
t_{OHA}	Data Hold from Address Change	3		3		3		3		ns
t_{ACS}	\overline{CS} LOW to Data Valid		20		25		35		45	ns
t_{LZCS}	\overline{CS} LOW to Low Z	3		3		3		3		ns
t_{HZCS}	\overline{CS} HIGH to High Z ^[4]		12		15		25		30	ns
t_{PU}	\overline{CS} LOW to Power-Up	0		0		0		0		ns
t_{PD}	\overline{CS} HIGH to Power-Down		20		25		35		45	ns
WRITE CYCLE^[5]										
t_{WC}	Write Cycle Time	20		25		35		45		ns
t_{SCS}	\overline{CS} LOW to Write End	15		20		30		35		ns
t_{AW}	Address Set-Up to Write End	15		20		30		35		ns
t_{HA}	Address Hold from Write End	2		2		2		2		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		2		ns
t_{PWE}	\overline{WE} Pulse Width	15		20		25		30		ns
t_{SD}	Data Set-Up to Write End	13		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
t_{LZWE}	\overline{WE} HIGH to Low Z	3		3		3		3		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[4]	0	13	0	15	0	20	0	25	ns




Shaded area contains preliminary information.

Switching Waveforms
Read Cycle No. 1^[6, 7]

1441-5

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
4. t_{HZCS} and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ± 500 mV from steady state voltage.
5. The internal write time of the memory is defined by the overlap of \overline{CS} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. WE is HIGH for read cycle.
7. Device is continuously selected, $\overline{CS} = V_{IL}$.

Switching Waveforms (continued)
Read Cycle No. 2^[6, 8]

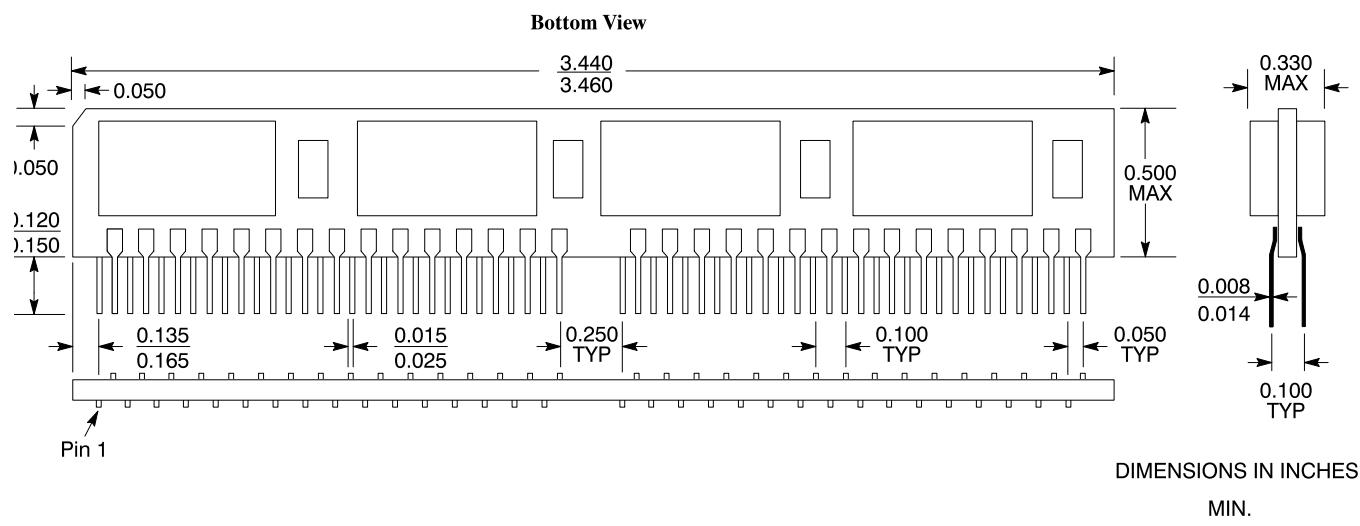
Write Cycle No. 1 (\overline{WE} Controlled)^[5]

Write Cycle No. 2 (\overline{CS} Controlled)^[5, 9]

Notes:

8. Address valid prior to or coincident with \overline{CS} transition LOW.

9. If \overline{CS} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.


Truth Table

CS	WE	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1441PZ-20C	PZ04	60-Pin ZIP Module	Commercial
25	CYM1441PZ-25C	PZ04	60-Pin ZIP Module	Commercial
35	CYM1441PZ-35C	PZ04	60-Pin ZIP Module	Commercial
45	CYM1441PZ-45C	PZ04	60-Pin ZIP Module	Commercial

Document #: 38-M-00020-B

Package Diagrams
60-Pin ZIP Module PZ04
