4

HL._

CYPRESS

Generating PROM Programming Files

PROMs are nonvolatile memory devices that were
first conceived as instruction and data storage de-
vices for microprocessor systems. Since their
introduction, PROMs have benefited from im-
provements in processing and manufacturing
technology. The evolution of PROMs has included
a tremendous increase in their density and speed
and has added new features such as built-in registers
and reprogrammability. Now these devices can be
used in a wide variety of applications other than
instruction storage. PROMs are commonly found
in state machines, decoders, encoders, complex
counters, controllers, sequencers, and look-up
tables as well as in their traditional role of instruc-
tion or microcode storage.

PROMs are simply an array of data coupled with an
input address decoder. The address presented to
the device drives a simple 1-of-n decoder. The de-
coder selects one preprogrammed memory location
whose data flows to the output pins of the device.
PLAs (Programmable Logic Array) and PALs (Pro-
grammable Array Logic) are also programmable
devices and, along with PROMSs, make up the ma-
jority of devices that are considered to be program-
mable logic elements. The difference between the
three types of programmable logic elements can be
seen by observing the internal structure of the pro-
grammable array of each of the devices. PLAs have
both a programmable “AND” array and a program-
mable “OR” array. PALs have a similar AND-OR
structure, but the number of inputs to the OR func-
tion is fixed, so only the AND array is program-
mable. Both the PLA and PAL have a fixed number
of AND-OR terms dedicated to each output.
Therefore, the number of functions controlling each
output is significantly reduced. PROMs, on the oth-

er hand, can realize every possible combination or
function of » input lines for a given output. There
are 2" product terms (where n = number of address
lines) per PROM output. This makes PROMs use-
ful in very complex functions that exhaust the sum-
of-product resources of a traditional PAL or PLA
architecture. Some PROMs have additional fea-
tures, such as output registers, that enable them to
operate synchronously, which is required for state
machines. The Cypress CY7C245A is one of these
PROMs. Presets, clears, and initialization words
are also available for dealing with power-on and re-
set conditions.

After understanding the basic function of a PROM,
the designer must now create the PROM data in the
form of a programming file. Creating the PROM
data can be intimidating to engineers who are not fa-
miliar with the process. Looking back, we can see
that PROMs were mainly used for instruction or mi-
crocode storage in a microprocessor or bit-slice-
based system. Therefore, the PROM data for such
systems is generated by the compilers, assemblers,
and linkers that are resident on the CPU develop-
ment station or emulator. Generating the PROM
files for such systems is almost trivial because the
programming data file is simply a listing of the
CPU’s executable instructions generated by the
compiler. But creating the programming file for a
complex decoder, look-up table, sequencer, or state
machine can be pretty complicated and overwhelm-
ing. In fact, just figuring out where to start or what
tools to use can become very time consuming. In
this brief application note we will discuss the struc-
ture of PROM data files and show several ways to
create them. Examples using simple languages such

Generating PROM Programming Files

e

as C and BASIC, as well as PLD development tools
such as ABEL and LOG/iC, will be discussed.

In order to understand how to create programming
files, you must first be familiar with the actual struc-
ture or format of such a file. Again, a PROM is sim-
ply an array of programmable memory locations.
The data file that is transmitted to the PROM pro-
grammer must therefore contain data for each of
the locations to be programmed. There are many
standard formats for PROM data files.

Generic PROM programmers, such as those
manufactured by Data 1/O, Stag, Logical Devices,
Digelic, SMS, and Kontron, are generally compat-
ible with the following formats:

ASCII—HEX (Space)

Binary

DEC Binary

Motorola Exorciser

Motorola Exormax

Intel “Intellec” 8/ MDS
Intel MCS86 “intellec 86”
Tektronix “HEX”
Extended Tektronix “HEX”

The following section describes each format in de-
tail. Each format has its own set of required fields,
delimiters, and special characters. When writing
code in C or BASIC, you must know exactly where
to place each field and special character so that a
programmer will interpret your data correctly.

ASCII-HEX (Space)

One of the simplest and probably the most universal
file formats is HEX or HEX-Space ASCII. This for-
mat does not support checksum or address field con-
ventions. Therefore, the data in the file must be in
order incrementing from address 0. However, many

times the program that reads the file into program-
mer memory can manipulate the data to start at any
address location.

Three hidden instructions are used in this format:

1. ASCII STX Character (ASCII 02) marks the be-
ginning of the file.

2. ASCII ETX Character (ASCII 03) marks the
end of the file.

3. ASCII Space (ASCII 20) is between each data

byte.

Figure 1 shows a data file for a 64-byte PROM imple-
mented in ASCII-HEX (space) format.

Note that each data byte is separated by a “space”
character and that no addressing information is
present.

ASCII Binary

ASCII Binary files, like ASCII-HEX, contain no
addressing or checksum information. ASCII Binary
allows for very fast file transfers to the programmer
due toits simplicity. The data format begins with the
ASCII STX character and is terminated by an ETX.
Data is grouped into four-byte lines separated by a
space. Each line of data begins with a “B” character
and ends with an “F” character.

Figure 2 shows a 64-byte PROM file containing all
zeros using ASCII Binary format. All data is loaded
into the PROM sequentially starting at location 0.

Simple Binary

The simple Binary format consists of just binary
data. There are no start or end characters. Al-
though the binary file is simple to produce, it is not
arecommended output format for the following ex-
amples because binary files cannot be easily read by
text editors.

(STX)FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF(ETX)

Figure 1. ASCII-HEX Format

3-2

Generating PROM Programming Files

——

(STX) BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF
BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF
BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF
BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF(ETX)

Figure 2. ASCII Binary Format

DEC Binary

DEC Binary is a modification of the basic ASCII
Binary file format. DEC Binary adds a starting ad-
dress and a checksum for each line of data.

Motorola Exorcisor

Motorola Exorcisor is one of the most widely used
formats. Motorola Exorcisor files are commonly re-
ferred to as “S” records because each line starts with
an “S” followed by the record type. Each line also
contains a byte count, starting address, and a check-
sum, which are delineated by carriage returns and
line feeds.

Start Character

0 45 0001 O0P1F7

nunuununnmm

9 (3 0000 FC

address field.

—Record Type

Data Record Checksum
Carriage Return, Line Feed
—Checksum Last Record

—Starting Address of Record
Hex data is stored sequentially starting at the address in the 2-byte

Figure 3 shows an example of a 64-byte PROM file
implementing “S” Records.

Calculating Record Checksum

The Checksum is calculated by first stripping off the
start code (“S”), the record type, and the checksum.
The remaining bytes are added together, converted
to binary, and complimented (one’s compliment).
For example, the optional sign on “S0” line reads:

S0 06 00 01 00 01 F7
Stripping the appropriate characters leaves:
06 00 01 00 01
Adding the bytes yields

Checksum First Record
‘ r Hex Data

1 13 0000 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FG
1 13 0010 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EC
1 113 0020 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF DC
1 13 0030 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF CQ

—

—Byte Count = Number of data bytes + 3
(adding 3 accounts for checksum and address)
Bytes to the left of the address are not included in the byte count.

0 = optional sign on characters (incompatible with most
programmers and must be stripped prior to transmission)

1 = Data Record
9 = End Record

Figure 3. S Record Format

Generating PROM Programming Files

——

08 hex
The compliment of the value

F7..... Record checksum

End of Each Record

It is important to end each record with a carriage re-
turn and a line feed, which is used as a delineator.

“S” records are useful because they are so universal.
However, this format can only be used for PROMs
smaller than 64 Kbytes because the address field is
limited to 4 bytes.

S0— Optional sign on record
S1— Data record (2 Byte Address field)
S2— Data Record (3 Byte Address Field)

Figure 4 shows an example of a 64-byte PROM file
implementing “Exormax S” records.

Intel “Intellec” §/MDS

Intellec is similar to S records in that each line con-
tains a starting address, byte count, and checksum.
However, each line begins with a colon.

Intellec Record Example:
“:”, Byte Count, Address, Record Type, Data,

Checksum

Motorola Exormax Byte Count: Total number of data bytes ONLY.

Exormax is another “S” record file and is identical
to Exorcisor with only one exception. Exormax al-
lows for a 6-digit address field, which makes it useful
for PROMs that are much larger than 64 Kbytes.

Starting Address: 2-byte field where record will
be placed in memory.

Record Type:
00 — Data Record

Exormax Record Number: 01 — End Record

Start Character
Checksum for First Record

Carriage Return, Line Feed —

0 6 000001 00P1F6

1 14 000000 FRFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FB
1 14 000010 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EB
2 14 000020 FRFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF DB
1 14 000030 FRFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF CH
9 ¢4 000000 FE

nunnnnon

Lli Data Record Checksum —l

—Checksum Last Record

—Starting Address of Record

Hex data is stored sequentially starting at the address in the three

byte address field.

—Byte Count = Number of data bytes + 4

(adding 4 accounts for checksum and address)

Bytes to the left of the address are not included in the byte count.

—Record Type

0 = optional sign on characters (incompatible with most
programmers and must be stripped prior to transmission)

1 = Data Record

9 = End Record

Figure 4. Exormax S Format

3-4

Generating PROM Programming Files

e

0 0(
0 0(
0 0(
0 0C
0 0

0000
1000
20 00
3000
0001

FFF
FFF
FFR
FFF
FF

OO) L

Start of Line
Byte Count

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 00
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF FO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF DO

Ll—‘\ —Checksum Last Record

—Record Type

Checksum —

—Starting Address

Figure 5. Intellec Format

Checksum: The sum of all preceding bytes in-
cluding byte count, Address, and all data bytes.
This number is expressed in two’s compliment
notation.

The end of each record is marked by a carriage
return.

Figure 5 shows a 64-byte PROM file using Intellec
format.

Since there is only a 2-byte address field, Intellec is
generally used for PROMs smaller than 64 Kbytes.

Intel MCS86 (Intellec 86)

Intellec 86 is an extension of the standard Intellec
format. It adds the feature of a Segment Base Ad-
dress record (SBA). Adding the SBA to the 2-byte
address field increases the total addressing capabili-
ty to 1M locations. The file must begin with an SBA
record because physical addresses are calculated us-
ing the Starting Address field and the most recent
SBA.

Intellec 86 Data or End Record Example:
“:”, Byte Count, Address, Record Type, Data,
Checksum

Intellec 86 SBA Record Example:
“:”, Byte Count, Address, Record Type “02”,
SBA, Checksum

Byte Count: Total number of data bytes ONLY.

Segment Base Address (SBA): A 2-byte field
that extends the starting address fields of the fol-
lowing records by 4 bits. A new SBA can be in-
serted as many times as needed. Records sent
after a new SBA will use the new SBA to calcu-
late the address.

Starting Address: A 2-byte field where record
will be placed in memory. The actual physical
address for data placement must be calculated
by using the SBA and Starting Address.

Record Type:

00 — Data Record
01 — End Record
(02 — SBA Record)

Checksum: The sum of all preceding bytes in-
cluding byte count, address, and all data bytes.
This number is expressed in two’s compliment
notation.

The end of each record is marked by a carriage
return and line feed.

Figure 6 shows a 64-byte PROM file using Intellec 86
format. This example has an SBA Value of 8000h,
which offsets the starting addresses as shown.

To calculate the starting address: (third data record)
Take the value of the most recent SBA (8000h)

Shift the SBA left 8000
Add value of start address field + 0030
Result: Physical Start Address 80030

Generating PROM Programming Files

e

20000 02
0 0G00 00
0001000
00020 00
0 0030 00
0 0000 01

800
FFF
FFR
FFF
FFF
FF

07C

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 00
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF FO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF DO

Figure 6. Intellec 86 Format

Again, the segment base address can be updated at
any time and will affect the records that follow the
change.

Tektronix Hex (TEK HEX)

TEK HEX is another simple file format that is ac-
cepted by most programming systems. It uses the
“/” character as a start-of-record marker and in-
cludes a starting address for each record, byte count,
data and two checksums. The first checksum is the
summation of the bytes for the address and byte
count fields. The second checksum is simply the
summation of all of the data bytes. Figure 7 shows
an example of a file stored in TEK HEX format.

Start Character: “/” is used to mark the begin-
ning of each line. Most programmers ignore any
characters sent before the “/”.

Start Address: This value is a 2-byte absolute ad-
dress. It represents the starting address for the
first data byte in the record. All following bytes
in the record are stored sequentially.

Byte Count: The number of data bytes in the re-
cord are represented by the byte-count field.
The end of record is marked by setting the byte
count equal to “00”.

000 10
010 10
020 10
030 10
000 0Q

01
02
03
04
00

FFF
FFF
FFF
FFF

~ O~~~ ~—

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO

First Checksum: The simple summation of the
nibbles in the address and byte-count fields are
represented by the first checksum in each re-
cord.

Second Checksum: Calculated by summing all
of the nibbles of the data bytes in the record, the
second checksum is placed at the end of the re-
cord.

Each record is terminated by a carriage return/
line feed.

Extended Tektronix Hex (XTEK)

XTEK is a variation of the standard TEK HEX for-
mat. It uses the “/” character as a start of record
marker and includes a starting address for each re-
cord, byte count, data, and two checksums. The first
checksum is the summation of the nibbles for the ad-
dress and byte-count fields. The second checksum
is simply the summation of all of the data nibbles.
Figure 8 shows an example of a file stored in XTEK
format.

Start Character: “/” is used to mark the begin-
ning of each line. Most programmers ignore any
characters sent before the “/”.

Start Address: This value is a 2-byte absolute ad-
dress. It represents the starting address for the
first data byte in the record. All following bytes
in the record are stored sequentially.

Figure 7. TEK HEX Format

3-6

Generating PROM Programming Files

—m

Byte Count: The number of data bytes in the re-
cord are represented by the byte-count field.
The end of record is marked by setting the byte
count equal to “00”.

First Checksum: The simple summation of the
nibbles in the address and byte count fields are
represented by first checksum in each record.

Second Checksum: The summation of the data
nibbles is represented by the second checksum,
which is placed at the end of the record.

Each record is terminated by a carriage return/
line feed.

Using High-Level Languages to Create
Files

Depending on the application, there are many dif-
ferent ways to create the actual file. PROMs that
contain data derived from mathematical formulas
such as look-up tables are easily implemented using
a high-level language such as C or BASIC. These
languages can easily deal with the complicated data
types and mathematical data manipulation that is
required for many applications. The data created by
the program must be stored in a file so that it can be
transferred to a programmer at some later time.
The following examples show that opening a new
file and writing the data is simple when using high-
level languages.

As shown in Figure 9, this method written in C fol-
lows the simple form:

1. Header documentation — The Header docu-
mentation is usually written as comments to
help the user understand the purpose and flow
of the program. Documentation is not essential,
but it is good practice.

2. Constant declaration — Following the Header,
the constants can be declared as symbols to help

the user update the program to accommodate
changes in the design.

3. Variable definition — The variables should be
defined to agree with the type of data being
used.

4. Body — The body of the program will contain
the commands necessary to create the PROM
data. This usually takes the form of an outer
“For”-type loop to iteratively step through all
the possible combinations of address inputs, fol-
lowed by nested commands that create a data
instance to correspond to that combination of
address lines.

The C program in Figure 9 generates ASCII-Space
or HEX-Space format output files for downloading
to a PROM programmer.

Figure 10 is an example of using BASIC to produce
a PROM programming file in the HEX space for-
mat.

PLD Development Packages

In general, most of the standard PLD development
packages support PROMs. ABEL, CUPL, and
LOG/iC are three of the most popular third-party
packages. They support most of the industry stan-
dard PAL, PLA and PROM devices. These PLD de-
velopment tools are well suited to creating PROM
files that can be described by Boolean equations,
truth tables, or state-machine syntax.

ABEL

ABEL, produced by Data I/O Corporation, is one of
the most popular PLD development software pack-
ages on the market. The fact that ABEL supports
PROMs is one of the industry’s best-kept secrets.
Since a PROM can be thought of as a PLD with a
large number of product terms per output, it is rela-
tively easy for a PLD compiler to generate code for
a PROM. In fact, the source file (filename.abl) for

% 1A 6 06 4 1000 FFFFFFFFFFFFFFFF
% 1A 6 OE 4 1008 FFFFFFFFFFFFFFFF
% 1A 6 07 4 1010 FFFFFFFFFFFFFFFF

% OA 8 16 4 0000

Figure 8. XTEK Format

e

==
%ﬁ"é _— Generating PROM Programming Files
==+ _YPRESS

/* Example Program 1 */

/* The purpose of this program is to create a data file that could be

used as a COSINE look—up table. The table has an angular resolution of
256 points per period and an amplitude resolution 256 steps or 8 bits.

*/

#include <stdio.h> [* defines the input-output of PC */
#include <math.h> /* defines the math package of PC */

intij; /* integers for loop variables */

float y,x,z; [* floating pt variables for COSINE */
int data; /* data variables for result */

int outfile;

main()

/* main denotes the start of the active part of the program */

FILE *outfile;
/* makes outfile a pointer to the output file */

outfile=fopen("promfile”,"w");
[* opens the output file for writing */

fprintf(outfile,”%c”,2);
[* prints control data to output file for download STX */

/* This section consists of 2 nested loops to generate every possible
combination of address inputs. An incrementing variable z is used to
generate the angle y in radians. x =the cosine of y. Then x is justi-
fied to use the dynamic range of 256 states. The result is stored as an
integer in data. The data is written directly to the output file. The
data is broken into blocks for easier reading. */
z=0;
for(i=0;i<=15;i++) {
for(j=0;j<=15;j++) {
y=M_PI*((z)/128.0);
x=(cos(y));
X=x*127.99999;
data = x+128;
fprintf(outfile,”%02X ”,data);
z=z+1.0;

}
fprintf(outfile,”\n”);

}
fprintf(outfile,”%c”,3);
[* prints control char ETX to output file */

fclose(outfile);
/* closes output file */

}

Figure 9. C Program to Generate ASCII-Space or HEX-Space Format Files

3-8

e

==
%ﬁ“é _— Generating PROM Programming Files
==+ _YPRESS

10 'Example program 2

20"

30 'The purpose of this program is to create a data file

40 'that could be used as a COSINE look—up table. The table
50 'has an angular resolution of 256 points per period and

60 'an amplitude resolution of 256 steps or 8 bits.

70’

80 Pl =3.14159

90 OPEN "O”",#1,"PROMFILE.HEX” ’open the file for output
100°

110 'This section consists of 2 nested loops to generate every
120 'possible combination of address inputs. An incrementing
130 'variable z is used to generate the angle y in radians.

140 'X = cosine of y. Then X is justified to use the dynamic
150 'range of 256 states. The result is stored as an integer
160 'in RANGE. The data is written directly to the output file
170 ’in the HEX SPACE format.

180"
190 PRINT#1,CHR$(2) ’start the file with the STX char
200z2=0 'initialize the loop

210 FOR1=0TO 15

220 FORJ=0TO 15

230 Y = PI*((Z2)/128)

240 X = COS(Y)

250 RANGE = INT(X*127.99999# + 128)
260 IF RANGE > 15 THEN 290

270 PRINT#1,”0";HEX$(RANGE);" ”;
280 GOTO 300

290 PRINT#1,HEX$(RANGE);" ";

300 Z=7Z+1

310 NEXTJ

320 PRINT#1,”

330 NEXT |

340 PRINT#1,CHR$(3); ’end the file with the ETX char
350 CLOSE

360 END

Figure 10. BASIC Program to Generate HEX-Space Format

a PROM and a PLD are almost identical. The only Figure 11 shows how to use truth tables and equa-

difference is in the device declaration. In the logic tions to generate a PROM file that is a comparator
diagram package for ABEL, there are pin descrip- with some additional built-in logic.
tions for 4-, 8-, and 16-bit PROMS. All methods of generating PLD files in ABEL are

also available for generating PROM files.

e

Generating PROM Programming Files

"INPUTS

A0
Al
A2
A3
BO
Bl
B2
B3

AGB
ALB
EQUAL

X=X

Equations

"OUTPUTS

module COMP_OR
title '4 bit comparator’

PROMB device ’'RA8PS8’;

8 address lines and 8 data lines

PIN # PROM ADDRESS/DATA BIT

PIN 1; " AO
PIN 2; "Al
PIN 3; "A2
PIN 4; " A3
PIN 5; " A4
PIN 17; " A5
PIN 18; ” A6
PIN 19; " A7

PIN #

PIN 14; "D8 A IS GREATER THAN B
PIN 13; "D7 AIS LESS THAN B
PIN12; "D6 AISEQUALTOB

ALL_HIGH PIN11; "D5 ALL BITS ARE HIGH
OR_BITS_3 PIN 9; "D4 Misc. logical functions
OR_BITS_2 PIN 8; "D3
OR_BITS_1 PIN 7; "D2
OR_BITS 0 PIN 6; "D1

Declarations
A_NIB =[A3,A2,A1,A0];
B_NIB =[B3,B2,B1,B0];

ALL_HIGH = (A_NIB==15) & (B_NIB==15);
OR_BITS_3 = A3 # B3;
OR_BITS_2 = A2 # B2;
OR_BITS_1=A1#B1;
OR_BITS_0 = A0 # BO;

Figure 11. Using Truth Tables and Equations in ABEL to Generate a Comparator PROM File

Generating PROM Programming Files

e

0

5

— . .

JE N %

<5 Q Z

2 Z

o o) O

EO O O

o 9 0 o

1 m A

< | v <

M < < e R .-
e S e =T -0 go©eoo -.OCo-.©Co©oo
AN = = = = s = m s = s o e e - - - N - - - -
loooocooocoooocooocoocoooco 7. . - Adqddg -Coo®0ocCoo
o - - - - -~ -~ = = = = = = = = = -r 00 4 - 4 - - 11 T ll n - T - -
MOOODO0OO0OO0DO0OO0OO0OO0OOOOO ww_ﬂ_.ﬂ_wwowoo _H__I._1I__1_I.H_1_H__11
SANNNNNNNNNNNNNNNN N A _.F__/_/_H__/>_H_ .F__/_/_H__/_/_H__/_H:H_
L O i s W Il vl >l I P I S vl g I ool T I I
WOlOlOlOlOlOlOlOl X o8 "X qX HH S X o XoXoo
GO ddSSddSdddSdd XAXAIXdgdxXd NXSSXSsSSH

NS00 ddddoccodadadd XXdXddgd4ds X6ds50ds-H40
S =)

N_,0101010101010101 OSXXXX XX XXXIXXAXAd
e?_,0,0,l,l,0,0,l,l,0,0,l,llo,O,lll, OoXXXooood XXdoXdodod
O<ooOo0O0ddddO0O00O0dddd OO0 O0XOoOOoOAddoO Xdoodooddo

B) - - ~ m mm e
..L_MOOOOOOOOllllllll [cNoNoNaoRo Ro R NoNoNe) OO0 dddO0OO0OO0O

Figure 11. Using Truth Tables and Equations in ABEL to Generate a Comparator PROM File (continued)
3-11

end COMP OR

Generating PROM Programming Files

——

LOG/iC

LOG/iC by ISDATA probably has the best support
of PROM devices due to its ability to create a
PROM file of any size. All the programmer has to
do is to tell the compiler how many inputs and how

many outputs the PROM should have. The above
ABEL file is reproduced in Figure 12 using LOG/iC.

Although not illustrated in the last two examples,
both ABEL and LOG/IC are capable of using state
machine input formats.

*IDENTIFICATION
additional misc. logic

*X-NAMES IDefine the input pins.
B[3..0], A[3..0]; IPins are defined MSB first,
ITherefor, B3 will be connected
Ito address bit 7 and AO will
lbe connected to address bit 0.

*Y-NAMES IDefine the output pins
AGB,ALB,EQUAL,ALL_HIGH,
OR_BITSJ[3..0];

*BOOLEAN EQUATIONS

ALL_HIGH = B3&B2&B1&B0&A3&A2&A1&A0;
OR_BITS3 = A3 #B3;

OR_BITS2 = A2 # B2;

OR_BITS1 = Al # B1;

OR_BITSO = A0 # BO;

*FUNCTION-TABLE

This example uses an 8 bit prom as a 4 bit comparator and does some

$ ((A3,A2,A1,A0, B3,B2,B1,B0)):((AGB,ALB,EQUAL));

0000 OO0OO0OO0: O O 1;A=BCONDITIONS
0001 0001: 00 1
00100010: 00 1
0011 0011:0 0 1
01000100: 0 0 1
0101 0101: 00 1
01100110: 00 1
0111 0111: 00 1
1000 1000: 0 0 1
1001 1001: 0 0 1;
10101010: 00 1
1011 1011: 00 1
1100 1100: 0 0 1;
1101 1101: 0 0 1;
11101110: 00 1
1111 1111: 00 1,

Figure 12. Using LOG/iC to Generate a Comparator PROM File

3-12

)

Generating PROM Programming Files
=4 CYprEss 8 8 3
0000 —---1 0O 1 0;A<BCONDS.
00 - —-=1 - 01 O
00 - -1-- 01 O
0---1--- 01 O
10--11-- 01 O
100-101-: 01 O
10001001: 01 O
010-011-:01 O
01000101: 01 o
00100011: 01 o0
1---0-- 1 0 0;A>BCONDS.
01-—-00-- 1 0 O
001- 000 - 1 0 O
0001 0000:1 0 O
11--10--:1 0 0
101-100-:1 0 O
1001 1000: 1 0 O
011-010-:1 0 O
0101 0100: 10 O
0011 0010:1 0 O
*ROM
TYPE =8_IN_8_OUT;
INPUTS = 8;
OUTPUTS =8;
*RUN
PROG = INTEL,; Produce an INTEL-HEX output format
*END

Figure 12. Using LOG/iC to Generate a Comparator PROM File (continued)

Conclusion language approach is probably the best method.
However, if a logical function is the desired result,

PROM files can be easily generated in a variety of PLD development tools will more than suffice.

ways. If a complex function is desired, a high-level

